17 research outputs found

    Acute exacerbation of COPD: is it the "stroke of the lungs"?

    No full text
    Georgios Hillas,1 Fotis Perlikos,1 Nikolaos Tzanakis2 1Department of Critical Care and Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, Athens, 2Department of Thoracic Medicine, University Hospital of Heraklion, Medical School, University of Crete, Crete, Greece Abstract: Chronic obstructive pulmonary disease (COPD) is one of the top five major causes of morbidity and mortality worldwide. Despite worldwide health care efforts, costs, and medical research, COPD figures demonstrate a continuously increasing tendency in mortality. This is contrary to other top causes of death, such as neoplasm, accidents, and cardiovascular disease. A major factor affecting COPD-related mortality is the acute exacerbation of COPD (AECOPD). Exacerbations and comorbidities contribute to the overall severity in individual patients. Despite the underestimation by the physicians and the patients themselves, AECOPD is a really devastating event during the course of the disease, similar to acute myocardial infarction in patients suffering from coronary heart disease. In this review, we focus on the evidence that supports the claim that AECOPD is the “stroke of the lungs”. AECOPD can be viewed as: a Semicolon or disease’s full-stop period, Triggering a catastrophic cascade, usually a Relapsing and Overwhelming event, acting as a Killer, needing Emergent treatment. Keywords: COPD, acute exacerbation, stroke&nbsp

    Managing comorbidities in COPD

    No full text
    Georgios Hillas,1 Fotis Perlikos,1 Ioanna Tsiligianni,2,3 Nikolaos Tzanakis2 1Department of Critical Care and Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, Athens, 2Department of Thoracic Medicine, University Hospital of Heraklion, Medical School, University of Crete, Crete, Greece; 3Department of General Practice, University Medical Centre of Groningen, Groningen, The NetherlandsAbstract: Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Age and smoking are common risk factors for COPD and other illnesses, often leading COPD patients to demonstrate multiple coexisting comorbidities. COPD exacerbations and comorbidities contribute to the overall severity in individual patients. Clinical trials investigating the treatment of COPD routinely exclude patients with multiple comorbidities or advanced age. Clinical practice guidelines for a specific disease do not usually address comorbidities in their recommendations. However, the management and the medical intervention in COPD patients with comorbidities need a holistic approach that is not clearly established worldwide. This holistic approach should include the specific burden of each comorbidity in the COPD severity classification scale. Further, the pharmacological and nonpharmacological management should also include optimal interventions and risk factor modifications simultaneously for all diseases. All health care specialists in COPD management need to work together with professionals specialized in the management of the other major chronic diseases in order to provide a multidisciplinary approach to COPD patients with multiple diseases. In this review, we focus on the major comorbidities that affect COPD patients. We present an overview of the problems faced, the reasons and risk factors for the most commonly encountered comorbidities, and the burden on health care costs. We also provide a rationale for approaching the therapeutic options of the COPD patient afflicted by comorbidity. Keywords: chronic obstructive pulmonary disease, comorbid major diseases, management, treatment, health care costs&nbsp

    Lazaroid (U-74389G) ameliorates lung injury due to lipid peroxidation and nitric oxide synthase-dependent reactive oxygen species generation caused by remote systematic ischemia-reperfusion following thoracoabdominal aortic occlusion

    No full text
    Introduction: Lung ischemia-reperfusion injury after thoracoabdominal aortic occlusion represents a major complication, which increases morbidity and mortality. In the present study we hypothesized that lazaroid U-74389G intravenous administration protects from lung ischemia-reperfusion injury through lipid peroxidation inhibition. Materials and methods: A total of 24 pigs were randomized in three groups. Group I (n = 8) underwent sham operation, group II (n = 8) underwent thoracoabdominal aortic occlusion for 45min and received placebo and group III (n = 8) received 3 doses of lazaroid (3 mg/kg) 60 and 30min before thoracoabdominal aortic occlusion and at 30min during thoracoabdominal aortic occlusion (duration 45min). Aortic occlusion was performed with aortic balloon-catheters under fluoroscopic guidance. All animals were sacrificed at the 7 t h postoperative day and lung specimens were harvested for molecular analysis. Results: mRNA levels of leukotrienes LB4 (LTB4R2), LC4 (LTC4S) and nitric oxide synthase (NOS) isoforms including iNOS, nNOS and eNOS were determined with real-time RT-qPCR. Nitric oxide can either induce (iNOS) or inhibit (nNOS and eNOS) lipid peroxidation based on its specific isoform origin. Group III showed significantly reduced mRNA levels of LTB4R2 (−63.7%), LTC4S (−35.9%) and iNOS (−60.2%) when compared with group II (P < 0.05, for all). The mRNA levels of nNOS was significantly increased (+37.4%), while eNOS was slightly increased (+2.1%) in group III when compared with group II (P < 0.05 and P = 0.467 respectively). Conclusion: Lazaroid U-74389G may represent an effective pharmacologic intervention in reducing lung ischemia-reperfusion injury following thoracoabdominal aortic occlusion. © 2018 IJS Publishing Group Lt

    Pulmonary function testing in COPD: looking beyond the curtain of FEV1

    No full text
    Chronic obstructive pulmonary disease (COPD) management remains challenging due to the high heterogeneity of clinical symptoms and the complex pathophysiological basis of the disease. Airflow limitation, diagnosed by spirometry, remains the cornerstone of the diagnosis. However, the calculation of the forced expiratory volume in the first second (FEV1) alone, has limitations in uncovering the underlying complexity of the disease. Incorporating additional pulmonary function tests (PFTs) in the everyday clinical evaluation of COPD patients, like resting volume, capacity and airway resistance measurements, diffusion capacity measurements, forced oscillation technique, field and cardiopulmonary exercise testing and muscle strength evaluation, may prove essential in tailoring medical management to meet the needs of such a heterogeneous patient population. We aimed to provide a comprehensive overview of the available PFTs, which can be incorporated into the primary care physician’s practice to enhance the efficiency of COPD management. © 2021, The Author(s)

    Incorporating Biomarkers in COPD Management: The Research Keeps Going

    No full text
    Globally, chronic obstructive pulmonary disease (COPD) remains a major cause of morbidity and mortality, having a significant socioeconomic effect. Several molecular mechanisms have been related to COPD including chronic inflammation, telomere shortening, and epigenetic modifications. Nowadays, there is an increasing need for novel therapeutic approaches for the management of COPD. These treatment strategies should be based on finding the source of acute exacerbation of COPD episodes and estimating the patient’s own risk. The use of biomarkers and the measurement of their levels in conjunction with COPD exacerbation risk and disease prognosis is considered an encouraging approach. Many types of COPD biomarkers have been identified which include blood protein biomarkers, cellular biomarkers, and protease enzymes. They have been isolated from different sources including peripheral blood, sputum, bronchoalveolar fluid, exhaled air, and genetic material. However, there is still not an exclusive biomarker that is used for the evaluation of COPD but rather a combination of them, and this is attributed to disease complexity. In this review, we summarize the clinical significance of COPD-related biomarkers, their association with disease outcomes, and COPD patients’ management. Finally, we depict the various samples that are used for identifying and measuring these biomarkers. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Therapeutic effects of the combination of inhaled beta2-agonists and beta-blockers in COPD patients with cardiovascular disease

    No full text
    Chronic obstructive pulmonary disease (COPD) is a major health problem worldwide, with co-morbidities contributing to the overall severity and mortality of the disease. The incidence and prevalence of cardiovascular disease among COPD patients are high. Both disorders often co-exist, mainly due to smoking, but they also share common underlying risk factors, such as aging and low-grade systemic inflammation. The therapeutic approach is based on agents, whose pharmacological properties are completely opposed. Beta2-agonists remain the cornerstone of COPD treatment due to their limited cardiac adverse effects. On the other hand, beta-blockers are administered in COPD patients with cardiovascular disease, but despite their proven cardiac benefits, they remain underused. There is still a trend among physicians over underprescription of these drugs in patients with heart failure and COPD due to bronchoconstriction. Therefore, cardioselective beta-blockers are preferred, and recent meta-analyses have shown reduced rates in mortality and exacerbations in COPD patients treated with beta-blockers. © 2017, Springer Science+Business Media, LLC

    Spontaneous breathing through increased airway resistance augments elastase-induced pulmonary emphysema

    No full text
    Introduction: Resistive breathing (RB), the pathophysiologic hallmark of chronic obstructive pulmonary disease (COPD), especially during exacerbations, is associated with significant inflammation and mechanical stress on the lung. Mechanical forces are implicated in the progression of emphysema that is a major pathologic feature of COPD. We hypothesized that resistive breathing exacerbates emphysema. Methods: C57BL/6 mice were exposed to 0.75 units of pancreatic porcine elastase intra-tracheally to develop emphysema. Resistive breathing was applied by suturing a nylon band around the trachea to reduce surface area to half for the last 24 or 72 hours of a 21-day time period after elastase treatment in total. Following RB (24 or 72 hours), lung mechanics were measured and bronchoalveolar lavage (BAL) was performed. Emphysema was quantified by the mean linear intercept (Lm) and the destructive index (DI) in lung tissue sections. Results: Following 21 days of intratracheal elastase exposure, Lm and DI increased in lung tissue sections [Lm (μm), control 39.09±0.76, elastase 62.05±2.19, p=0.003 and DI, ctr 30.95 ±2.75, elastase 73.12±1.75, p<0.001]. RB for 72 hours further increased Lm by 64% and DI by 19%, compared to elastase alone (p<0.001 and p=0.02, respectively). RB induced BAL neutrophilia in elastase-treated mice. Static compliance (Cst) increased in elastase-treated mice [Cst (mL/cmH2O), control 0.067±0.001, elastase 0.109±0.006, p<0.001], but super-imposed RB decreased Cst, compared to elastase alone [Cst (mL/cmH2O), elastase+RB24h 0.090±0.004, p=0.006 to elastase, elastase+RB72h 0.090±0.005, p=0.006 to elastase]. Conclusion: Resistive breathing augments pulmonary inflammation and emphysema in an elastase-induced emphysema mouse model. © 2020 Toumpanakis et al
    corecore